Regular functions over conformal quaternionic manifolds
The classical concept of affine locally symmetric spaces allows a generalization for various geometric structures on a smooth manifold. We remind the notion of symmetry for parabolic geometries and we summarize the known facts for -graded parabolic geometries and for almost Grassmannian structures, in particular. As an application of two general constructions with parabolic geometries, we present an example of non-flat Grassmannian symmetric space. Next we observe there is a distinguished torsion-free...