-metrische Zusammenhänge in isotropen Mannigfaltigkeiten. (- metric connections in isotropic manifolds).
We determine in the form of curves corresponding to strictly monotone functions as well as the components of affine connections for which any image of under a compact-free group of affinities containing the translation group is a geodesic with respect to . Special attention is paid to the case that contains many dilatations or that is a curve in . If is a curve in and is the translation group then we calculate not only the components of the curvature and the Weyl tensor but...
2000 Mathematics Subject Classification: 53B05, 53B99.Let AN be an affinely connected space without a torsion. With the help of N independent vector fields and their reciprocal covectors is built an affinor which defines a composition Xn ×Xm (n+m = N). The structure is integrable. New characteristics by the coefficients of the derivative equations are found for special compositions, studied in [1], [3]. Two-dimensional manifolds, named as bridges, which cut the both base manifolds of the composition...
En utilisant la version de Spencer-Goldschmidt du théorème de Cartan-Kähler nous étudions les conditions nécessaires et suffisantes pour qu’un système d’équations différentielles ordinaires du second ordre soit le système d’Euler-Lagrange associé à un lagrangien régulier. Dans la thèse de Z. Muzsnay cette technique a été déjà appliquée pour donner une version moderne du papier classique de Douglas qui traite le cas de la dimension 2. Ici nous considérons le cas où la dimension est arbitraire, nous...