Product-concircular curvature tensor.
We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional . We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional , and describe the corresponding Hessian structures.
A trans-Sasakian 3-manifold is pseudo-symmetric if and only if it is η-Einstein. In particular, a quasi-Sasakian 3-manifold is pseudo-symmetric if and only if it is a coKähler manifold or a homothetic Sasakian manifold. Some examples of non-Sasakian pseudo-symmetric contact 3-manifolds are exhibited.