Displaying 1001 – 1020 of 1303

Showing per page

Symmetry problems 2

N. S. Hoang, A. G. Ramm (2009)

Annales Polonici Mathematici

Some symmetry problems are formulated and solved. New simple proofs are given for some symmetry problems studied earlier. One of the results is as follows: if a single-layer potential of a surface, homeomorphic to a sphere, with a constant charge density, is equal to c/|x| for all sufficiently large |x|, where c > 0 is a constant, then the surface is a sphere.

Systems of rays in the presence of distribution of hyperplanes

S. Janeczko (1995)

Banach Center Publications

Horizontal systems of rays arise in the study of integral curves of Hamiltonian systems v H on T*X, which are tangent to a given distribution V of hyperplanes on X. We investigate the local properties of systems of rays for general pairs (H,V) as well as for Hamiltonians H such that the corresponding Hamiltonian vector fields v H are horizontal with respect to V. As an example we explicitly calculate the space of horizontal geodesics and the corresponding systems of rays for the canonical distribution...

Tangent Lie algebras to the holonomy group of a Finsler manifold

Zoltán Muzsnay, Péter T. Nagy (2011)

Communications in Mathematics

Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to...

Tangent Lines and Lipschitz Differentiability Spaces

Fabio Cavalletti, Tapio Rajala (2016)

Analysis and Geometry in Metric Spaces

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz...

Tensor approach to multidimensional webs

Alena Vanžurová (1998)

Mathematica Bohemica

An anholonomic ( n + 1 ) -web of dimension r is considered as an ( n + 1 ) -tuple of r -dimensional distributions in general position. We investigate a family of ( 1 , 1 ) -tensor fields (projectors and nilpotents associated with a web in a natural way) which will be used for characterization of all linear connections on a manifold preserving the given web.

Currently displaying 1001 – 1020 of 1303