Displaying 1121 – 1140 of 1303

Showing per page

Vanishing conharmonic tensor of normal locally conformal almost cosymplectic manifold

Farah H. Al-Hussaini, Aligadzhi R. Rustanov, Habeeb M. Abood (2020)

Commentationes Mathematicae Universitatis Carolinae

The main purpose of the present paper is to study the geometric properties of the conharmonic curvature tensor of normal locally conformal almost cosymplectic manifolds (normal LCAC-manifold). In particular, three conhoronic invariants are distinguished with regard to the vanishing conharmonic tensor. Subsequentaly, three classes of normal LCAC-manifolds are established. Moreover, it is proved that the manifolds of these classes are η -Einstein manifolds of type ( α , β ) . Furthermore, we have determined...

Varieties of minimal rational tangents of codimension 1

Jun-Muk Hwang (2013)

Annales scientifiques de l'École Normale Supérieure

Let  X be a uniruled projective manifold and let  x be a general point. The main result of [2] says that if the ( - K X ) -degrees (i.e., the degrees with respect to the anti-canonical bundle of  X ) of all rational curves through x are at least dim X + 1 , then X is a projective space. In this paper, we study the structure of  X when the ( - K X ) -degrees of all rational curves through x are at least dim X . Our study uses the projective variety 𝒞 x T x ( X ) , called the VMRT at  x , defined as the union of tangent directions to the rational curves...

Willmore submanifolds in the unit sphere.

Guo Zhen (2004)

Collectanea Mathematica

In this paper we generalize the self-adjoint differential operator (used by Cheng-Yau) on hypersurfaces of a constant curvature manifold to general submanifolds. The generalized operator is no longer self-adjoint. However we present its adjoint operator. By using this operator we get the pinching theorem on Willmore submanifolds which is analogous to the pinching theorem on minimal submanifold of a sphere given by Simon and Chern-Do Carmo-Kobayashi.

Witt algebra and the curvature of the Heisenberg group

Zoltán Muzsnay, Péter T. Nagy (2012)

Communications in Mathematics

The aim of this paper is to determine explicitly the algebraic structure of the curvature algebra of the 3-dimensional Heisenberg group with left invariant cubic metric. We show, that this curvature algebra is an infinite dimensional graded Lie subalgebra of the generalized Witt algebra of homogeneous vector fields generated by three elements.

Currently displaying 1121 – 1140 of 1303