Previous Page 6

Displaying 101 – 109 of 109

Showing per page

Curvatures of the diagonal lift from an affine manifold to the linear frame bundle

Oldřich Kowalski, Masami Sekizawa (2012)

Open Mathematics

We investigate the curvature of the so-called diagonal lift from an affine manifold to the linear frame bundle LM. This is an affine analogue (but not a direct generalization) of the Sasaki-Mok metric on LM investigated by L.A. Cordero and M. de León in 1986. The Sasaki-Mok metric is constructed over a Riemannian manifold as base manifold. We receive analogous and, surprisingly, even stronger results in our affine setting.

Curved thin domains and parabolic equations

M. Prizzi, M. Rinaldi, K. P. Rybakowski (2002)

Studia Mathematica

Consider the family uₜ = Δu + G(u), t > 0, x Ω ε , ν ε u = 0 , t > 0, x Ω ε , ( E ε ) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ω ε is a thin domain in l , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l . If G is dissipative, then equation ( E ε ) has a global attractor ε . We identify a “limit” equation for the family ( E ε ) , prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺.

Curves and surfaces in hyperbolic space

Shyuichi Izumiya, Donghe Pei, Masatomo Takahashi (2004)

Banach Center Publications

In the first part (Sections 2 and 3), we give a survey of the recent results on application of singularity theory for curves and surfaces in hyperbolic space. After that we define the hyperbolic canal surface of a hyperbolic space curve and apply the results of the first part to get some geometric relations between the hyperbolic canal surface and the centre curve.

Cut and singular loci up to codimension 3

Pablo Angulo Ardoy, Luis Guijarro (2011)

Annales de l’institut Fourier

We give a new and detailed description of the structure of cut loci, with direct applications to the singular sets of some Hamilton-Jacobi equations. These sets may be non-triangulable, but a local description at all points except for a set of Hausdorff dimension n - 2 is well known. We go further in this direction by giving a classification of all points up to a set of Hausdorff dimension n - 3 .

Currently displaying 101 – 109 of 109

Previous Page 6