Gauge theoretic invariants of Dehn surgeries on knots.
We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by...
The Conley-Zehnder index associates an integer to any continuous path of symplectic matrices starting from the identity and ending at a matrix which does not admit as an eigenvalue. Robbin and Salamon define a generalization of the Conley-Zehnder index for any continuous path of symplectic matrices; this generalization is half integer valued. It is based on a Maslov-type index that they define for a continuous path of Lagrangians in a symplectic vector space , having chosen a given reference...
We introduce an infinite-dimensional version of the Amann-Conley-Zehnder reduction for a class of boundary problems related to nonlinear perturbed elliptic operators with symmetric derivative. We construct global generating functions with finite auxiliary parameters, describing the solutions as critical points in a finite-dimensional space.
Let be a Lagrangian submanifold of for some closed manifold X. Let be a generating function for which is quadratic at infinity, and let W(x) be the corresponding graph selector for in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset of measure zero such that W is Lipschitz continuous on X, smooth on and for Let H(x,p)=0 for . Then W is a classical solution to on and extends to a Lipschitz function on the whole of X. Viterbo refers to W as a variational...