Displaying 61 – 80 of 135

Showing per page

Multiplicative integrable models from Poisson-Nijenhuis structures

Francesco Bonechi (2015)

Banach Center Publications

We discuss the role of Poisson-Nijenhuis (PN) geometry in the definition of multiplicative integrable models on symplectic groupoids. These are integrable models that are compatible with the groupoid structure in such a way that the set of contour levels of the hamiltonians in involution inherits a topological groupoid structure. We show that every maximal rank PN structure defines such a model. We consider the examples defined on compact hermitian symmetric spaces studied by F. Bonechi, J. Qiu...

Notes on prequantization of moduli of G -bundles with connection on Riemann surfaces

Andres Rodriguez (2004)

Annales mathématiques Blaise Pascal

Let 𝒳 S be a smooth proper family of complex curves (i.e. family of Riemann surfaces), and a G -bundle over 𝒳 with connection along the fibres 𝒳 S . We construct a line bundle with connection ( , ) on S (also in cases when the connection on has regular singularities). We discuss the resulting ( , ) mainly in the case G = * . For instance when S is the moduli space of line bundles with connection over a Riemann surface X , 𝒳 = X × S , and is the Poincaré bundle over 𝒳 , we show that ( , ) provides a prequantization of S .

On the geometric prequantization of brackets.

Manuel de León, Juan Carlos Marrero, Edith Padrón (2001)

RACSAM

En este artículo se considera un marco general para la precuantización geométrica de una variedad provista de un corchete que no es necesariamente de Jacobi. La existencia de una foliación generalizada permite definir una noción de fibrado de precuantización. Se estudia una aproximación alternativa suponiendo la existencia de un algebroide de Lie sobre la variedad. Se relacionan ambos enfoques y se recuperan los resultados conocidos para variedades de Poisson y Jacobi.

Currently displaying 61 – 80 of 135