Spherical symmetry in classical and quantum Galilei general relativity
Dynamics of a point-particle system interacting gravitationally according to the general theory of relativity can be analyzed within the canonical formalism of Arnowitt, Deser, and Misner. To describe the property of being a point particle one can employ Dirac delta distribution in the energy-momentum tensor of the system. We report some mathematical difficulties which arise in deriving the 3rd post-Newtonian Hamilton's function for such a system. We also offer ways to overcome partially these difficulties....
The most elegant definition of singularities in general relativity as b-boundary points, when applied to the closed Friedman world model, leads to the disastrous situation: both the initial and final singularities form the single point of the b-boundary which is not Hausdorff separated from the rest of space-time. We apply Alain Connes' method of non-commutative geometry, defined in terms of a C*-algebra, to this case. It turns out that both the initial and final singularities can be analysed as...
We show what extra condition is necessary to be able to use the positive mass argument of Witten [12] on an asymptotically locally euclidean manifold. Specifically we show that the 'generalized positive action conjecture' holds if one assumes that the signature of the manifold has the correct value.
This paper is devoted to geometric formulation of the regular (resp. strongly regular) Hamiltonian system. The notion of the regularization of the second order Lagrangians is presented. The regularization procedure is applied to concrete example.
The symmetry operators for Klein-Gordon equation on quantum Minkowski space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives and variables for the case Z=0 is given. It is applied then with symmetry operators to the construction of the conservation law and the explicit form of conserved currents for Klein-Gordon equation.
We present a review of the spacecraft Doppler tracking technique used in broad band searches for gravitational waves in the millihertz frequency band. After deriving the transfer functions of a gravitational wave pulse and of the noise sources entering into the Doppler observable, we summarize the upper limits for the amplitudes of gravitational wave bursts, continuous, and of a stochastic background estimated by Doppler tracking experiments.
We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if ).
We provide a geometric well-posedness theory for the Einstein equations within the class of weakly regular vacuum spacetimes with -symmetry, as defined in the present paper, and we investigate their global causal structure. Our assumptions allow us to give a meaning to the Einstein equations under weak regularity as well as to solve the initial value problem under the assumed symmetry. First, introducing a frame adapted to the symmetry and identifying certain cancellation properties taking place...
We review some well posed formulations of the evolution part of the Cauchy problem of General Relativity that we have recently obtained. We include also a new first order symmetric hyperbolic system based directly on the Riemann tensor and the full Bianchi identities. It has only physical characteristics and matter sources can be included. It is completely equivalent to our other system with these properties.