Displaying 301 – 320 of 400

Showing per page

Some conditions under which a uniform space is fine

Umberto Marconi (1993)

Commentationes Mathematicae Universitatis Carolinae

Let X be a uniform space of uniform weight μ . It is shown that if every open covering, of power at most μ , is uniform, then X is fine. Furthermore, an ω μ -metric space is fine, provided that every finite open covering is uniform.

Some non-multiplicative properties are l -invariant

Vladimir Vladimirovich Tkachuk (1997)

Commentationes Mathematicae Universitatis Carolinae

A cardinal function ϕ (or a property 𝒫 ) is called l -invariant if for any Tychonoff spaces X and Y with C p ( X ) and C p ( Y ) linearly homeomorphic we have ϕ ( X ) = ϕ ( Y ) (or the space X has 𝒫 ( X 𝒫 ) iff Y 𝒫 ). We prove that the hereditary Lindelöf number is l -invariant as well as that there are models of Z F C in which hereditary separability is l -invariant.

Some properties of g- and P-spaces

Kalamidas, N. (1999)

Serdica Mathematical Journal

A γ-space with a strictly positive measure is separable. An example of a non-separable γ−space with c.c.c. is given. A P−space with c.c.c. is countable and discrete.

Spaces with large star cardinal number

Yan-Kui Song (2012)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove the following statements: (1) For any cardinal κ , there exists a Tychonoff star-Lindelöf space X such that a ( X ) κ . (2) There is a Tychonoff discretely star-Lindelöf space X such that a a ( X ) does not exist. (3) For any cardinal κ , there exists a Tychonoff pseudocompact σ -starcompact space X such that st - l ( X ) κ .

Special almost P-spaces

Alessandro Fedeli (1997)

Commentationes Mathematicae Universitatis Carolinae

Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space X of this kind the inequality “ | X | ψ c ( X ) t ( X ) " holds.

Currently displaying 301 – 320 of 400