Displaying 81 – 100 of 141

Showing per page

Condensations of Cartesian products

Oleg I. Pavlov (1999)

Commentationes Mathematicae Universitatis Carolinae

We consider when one-to-one continuous mappings can improve normality-type and compactness-type properties of topological spaces. In particular, for any Tychonoff non-pseudocompact space X there is a μ such that X μ can be condensed onto a normal ( σ -compact) space if and only if there is no measurable cardinal. For any Tychonoff space X and any cardinal ν there is a Tychonoff space M which preserves many properties of X and such that any one-to-one continuous image of M μ , μ ν , contains a closed copy...

Connected Hausdorff subtopologies

Jack R. Porter (2001)

Commentationes Mathematicae Universitatis Carolinae

A non-connected, Hausdorff space with a countable network has a connected Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions posed by Tkačenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae 37 (1996), 825–841]. A non-H-closed, Hausdorff space with countable π -weight and no connected, Hausdorff subtopology is provided.

Connected LCA groups are sequentially connected

Shou Lin, Mihail G. Tkachenko (2013)

Commentationes Mathematicae Universitatis Carolinae

We prove that every connected locally compact Abelian topological group is sequentially connected, i.e., it cannot be the union of two proper disjoint sequentially closed subsets. This fact is then applied to the study of extensions of topological groups. We show, in particular, that if H is a connected locally compact Abelian subgroup of a Hausdorff topological group G and the quotient space G / H is sequentially connected, then so is G .

Connections between connected topological spaces on the set of positive integers

Paulina Szczuka (2013)

Open Mathematics

In this paper we introduce a connected topology T on the set ℕ of positive integers whose base consists of all arithmetic progressions connected in Golomb’s topology. It turns out that all arithmetic progressions which are connected in the topology T form a basis for Golomb’s topology. Further we examine connectedness of arithmetic progressions in the division topology T′ on ℕ which was defined by Rizza in 1993. Immediate consequences of these studies are results concerning local connectedness of...

Currently displaying 81 – 100 of 141