Page 1 Next

Displaying 1 – 20 of 153

Showing per page

A category Ψ-density topology

Władysław Wilczyński, Wojciech Wojdowski (2011)

Open Mathematics

Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open...

A Čech function in ZFC

Fred Galvin, Petr Simon (2007)

Fundamenta Mathematicae

A nontrivial surjective Čech closure function is constructed in ZFC.

A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom

Murray G. Bell (1996)

Commentationes Mathematicae Universitatis Carolinae

We answer a question of I. Juhasz by showing that MA + ¬ CH does not imply that every compact ccc space of countable π -character is separable. The space constructed has the additional property that it does not map continuously onto I ω 1 .

A compact Hausdorff topology that is a T₁-complement of itself

Dmitri Shakhmatov, Michael Tkachenko (2002)

Fundamenta Mathematicae

Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces ( X , τ X ) and ( Y , τ Y ) are called T₁-complementary provided that there exists a bijection f: X → Y such that τ X and f - 1 ( U ) : U τ Y are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size 2 which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact Hausdorff...

A completion of is a field

José E. Marcos (2003)

Czechoslovak Mathematical Journal

We define various ring sequential convergences on and . We describe their properties and properties of their convergence completions. In particular, we define a convergence 𝕃 1 on by means of a nonprincipal ultrafilter on the positive prime numbers such that the underlying set of the completion is the ultraproduct of the prime finite fields / ( p ) . Further, we show that ( , 𝕃 1 * ) is sequentially precompact but fails to be strongly sequentially precompact; this solves a problem posed by D. Dikranjan.

A continuous operator extending fuzzy ultrametrics

I. Stasyuk, Edward D. Tymchatyn (2011)

Commentationes Mathematicae Universitatis Carolinae

We consider the problem of simultaneous extension of fuzzy ultrametrics defined on closed subsets of a complete fuzzy ultrametric space. We construct an extension operator that preserves the operation of pointwise minimum of fuzzy ultrametrics with common domain and an operation which is an analogue of multiplication by a constant defined for fuzzy ultrametrics. We prove that the restriction of the extension operator onto the set of continuous, partial fuzzy ultrametrics is continuous with respect...

A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube

Miloš S. Kurilić, Aleksandar Pavlović (2014)

Czechoslovak Mathematical Journal

We compare the forcing-related properties of a complete Boolean algebra 𝔹 with the properties of the convergences λ s (the algebraic convergence) and λ ls on 𝔹 generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that λ ls is a topological convergence iff forcing by 𝔹 does not produce new reals and that λ ls is weakly topological if 𝔹 satisfies condition ( ) (implied by the 𝔱 -cc). On the other hand, if λ ls is a weakly topological convergence, then 𝔹 is a 2 𝔥 -cc algebra...

Currently displaying 1 – 20 of 153

Page 1 Next