Exponentiability in lax slices of .
For metrizable continua, there exists the well-known notion of a Whitney map. If is a nonempty, compact, and metric space, then any Whitney map for any closed subset of can be extended to a Whitney map for [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.
We present a categorical approach to the extension of probabilities, i.e. normed -additive measures. J. Novák showed that each bounded -additive measure on a ring of sets is sequentially continuous and pointed out the topological aspects of the extension of such measures on over the generated -ring : it is of a similar nature as the extension of bounded continuous functions on a completely regular topological space over its Čech-Stone compactification (or as the extension of continuous...