The search session has expired. Please query the service again.

Displaying 561 – 580 of 1011

Showing per page

On powers of Lindelöf spaces

Isaac Gorelic (1994)

Commentationes Mathematicae Universitatis Carolinae

We present a forcing construction of a Hausdorff zero-dimensional Lindelöf space X whose square X 2 is again Lindelöf but its cube X 3 has a closed discrete subspace of size 𝔠 + , hence the Lindelöf degree L ( X 3 ) = 𝔠 + . In our model the Continuum Hypothesis holds true. After that we give a description of a forcing notion to get a space X such that L ( X n ) = 0 for all positive integers n , but L ( X 0 ) = 𝔠 + = 2 .

On projectively quotient functors

T. F. Zhuraev (2001)

Commentationes Mathematicae Universitatis Carolinae

We introduce notions of projectively quotient, open, and closed functors. We give sufficient conditions for a functor to be projectively quotient. In particular, any finitary normal functor is projectively quotient. We prove that the sufficient conditions obtained are necessary for an arbitrary subfunctor of the functor 𝒫 of probability measures. At the same time, any “good” functor is neither projectively open nor projectively closed.

On reflexive closed set lattices

Zhongqiang Yang, Dong Sheng Zhao (2010)

Commentationes Mathematicae Universitatis Carolinae

For a topological space X , let S ( X ) denote the set of all closed subsets in X , and let C ( X ) denote the set of all continuous maps f : X X . A family 𝒜 S ( X ) is called reflexive if there exists 𝒞 C ( X ) such that 𝒜 = { A S ( X ) : f ( A ) A for every f 𝒞 } . Every reflexive family of closed sets in space X forms a sub complete lattice of the lattice of all closed sets in X . In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed...

On some spaces which are covered by a product space

Izu Vaisman (1977)

Annales de l'institut Fourier

In this note, a topological version of the results obtained, in connection with the de Rham reducibility theorem (Comment. Math. Helv., 26 ( 1952), 328–344), by S. Kashiwabara (Tôhoku Math. J., 8 (1956), 13–28), (Tôhoku Math. J., 11 (1959), 327–350) and Ia. L. Sapiro (Izv. Bysh. Uceb. Zaved. Mat. no6, (1972), 78–85, Russian), (Izv. Bysh. Uceb. Zaved. Mat. no4, (1974), 104–113, Russian) is given. Thus a characterization of a class of topological spaces covered by a product space is obtained and the...

Currently displaying 561 – 580 of 1011