Displaying 741 – 760 of 1013

Showing per page

Remarks on Star-Hurewicz Spaces

Yan-Kui Song (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

A space X is star-Hurewicz if for each sequence (𝒰ₙ: n ∈ ℕ) of open covers of X there exists a sequence (𝓥ₙ: n ∈ ℕ) such that for each n, 𝓥ₙ is a finite subset of 𝒰ₙ, and for each x ∈ X, x ∈ St(⋃ 𝓥ₙ,𝒰ₙ) for all but finitely many n. We investigate the relationship between star-Hurewicz spaces and related spaces, and also study topological properties of star-Hurewicz spaces.

Remarks on the Stone Spaces of the Integers and the Reals without AC

Horst Herrlich, Kyriakos Keremedis, Eleftherios Tachtsis (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

In ZF, i.e., the Zermelo-Fraenkel set theory minus the Axiom of Choice AC, we investigate the relationship between the Tychonoff product 2 ( X ) , where 2 is 2 = 0,1 with the discrete topology, and the Stone space S(X) of the Boolean algebra of all subsets of X, where X = ω,ℝ. We also study the possible placement of well-known topological statements which concern the cited spaces in the hierarchy of weak choice principles.

Removing sets from connected product spaces while preserving connectedness

Melvin Henriksen, Amir Nikou (2007)

Commentationes Mathematicae Universitatis Carolinae

As per the title, the nature of sets that can be removed from a product of more than one connected, arcwise connected, or point arcwise connected spaces while preserving the appropriate kind of connectedness is studied. This can depend on the cardinality of the set being removed or sometimes just on the cardinality of what is removed from one or two factor spaces. Sometimes it can depend on topological properties of the set being removed or its trace on various factor spaces. Some of the results...

Rings of maps: sequential convergence and completion

Roman Frič (1999)

Czechoslovak Mathematical Journal

The ring B ( R ) of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring C ( R ) of all continuous functions and, similarly, the ring 𝔹 of all Borel measurable subsets of R is a sequential ring completion of the subring 𝔹 0 of all finite unions of half-open intervals; the two completions are not categorical. We study 0 * -rings of maps and develop a completion theory covering the two examples. In particular, the σ -fields of sets form an epireflective...

Currently displaying 741 – 760 of 1013