Displaying 101 – 120 of 187

Showing per page

On reflexive closed set lattices

Zhongqiang Yang, Dong Sheng Zhao (2010)

Commentationes Mathematicae Universitatis Carolinae

For a topological space X , let S ( X ) denote the set of all closed subsets in X , and let C ( X ) denote the set of all continuous maps f : X X . A family 𝒜 S ( X ) is called reflexive if there exists 𝒞 C ( X ) such that 𝒜 = { A S ( X ) : f ( A ) A for every f 𝒞 } . Every reflexive family of closed sets in space X forms a sub complete lattice of the lattice of all closed sets in X . In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed...

On some spaces which are covered by a product space

Izu Vaisman (1977)

Annales de l'institut Fourier

In this note, a topological version of the results obtained, in connection with the de Rham reducibility theorem (Comment. Math. Helv., 26 ( 1952), 328–344), by S. Kashiwabara (Tôhoku Math. J., 8 (1956), 13–28), (Tôhoku Math. J., 11 (1959), 327–350) and Ia. L. Sapiro (Izv. Bysh. Uceb. Zaved. Mat. no6, (1972), 78–85, Russian), (Izv. Bysh. Uceb. Zaved. Mat. no4, (1974), 104–113, Russian) is given. Thus a characterization of a class of topological spaces covered by a product space is obtained and the...

On spaces with the property of weak approximation by points

Angelo Bella (1994)

Commentationes Mathematicae Universitatis Carolinae

A sufficient condition that the product of two compact spaces has the property of weak approximation by points (briefly WAP) is given. It follows that the product of the unit interval with a compact WAP space is also a WAP space.

On -starcompact spaces

Yan-Kui Song (2006)

Czechoslovak Mathematical Journal

A space X is -starcompact if for every open cover 𝒰 of X , there exists a Lindelöf subset L of X such that S t ( L , 𝒰 ) = X . We clarify the relations between -starcompact spaces and other related spaces and investigate topological properties of -starcompact spaces. A question of Hiremath is answered.

On subsets of Alexandroff duplicates

Takemi Mizokami (2005)

Commentationes Mathematicae Universitatis Carolinae

We characterize the subsets of the Alexandroff duplicate which have a G δ -diagonal and the subsets which are M-spaces in the sense of Morita.

On subspaces of pseudo-radial spaces

Jin Yuan Zhou (1993)

Commentationes Mathematicae Universitatis Carolinae

It is proved that, under the Martin’s Axiom, every T 1 -space with countable tightness is a subspace of some pseudo-radial space. We also give several characterizations of subspaces of pseudo-radial spaces and conclude that being a subspace of a pseudo-radial space is a local property.

Currently displaying 101 – 120 of 187