On the set-theoretic strength of the n-compactness of generalized Cantor cubes
We investigate, in set theory without the Axiom of Choice , the set-theoretic strength of the statement Q(n): For every infinite set X, the Tychonoff product , where 2 = 0,1 has the discrete topology, is n-compact, where n = 2,3,4,5 (definitions are given in Section 1). We establish the following results: (1) For n = 3,4,5, Q(n) is, in (Zermelo-Fraenkel set theory minus ), equivalent to the Boolean Prime Ideal Theorem , whereas (2) Q(2) is strictly weaker than in set theory (Zermelo-Fraenkel set...