Dugundji extenders and retracts on generalized ordered spaces
For a subspace A of a space X, a linear extender φ:C(A) → C(X) is called an -extender (resp. -extender) if φ(f)[X] is included in the convex hull (resp. closed convex hull) of f[A] for each f ∈ C(A). Consider the following conditions (i)-(vii) for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union of A and all clopen convex components of X; (iii) there is a continuous -extender φ:C(A × Y) → C(X × Y), with respect to both the compact-open topology and...