Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Does C* -embedding imply C*-embedding in the realm of products with a non-discrete metric factor?

Valentin Gutev, Haruto Ohta (2000)

Fundamenta Mathematicae

The above question was raised by Teodor Przymusiński in May, 1983, in an unpublished manuscript of his. Later on, it was recognized by Takao Hoshina as a question that is of fundamental importance in the theory of rectangular normality. The present paper provides a complete affirmative solution. The technique developed for the purpose allows one to answer also another question of Przymusiński's.

Domain representability of C p ( X )

Harold Bennett, David Lutzer (2008)

Fundamenta Mathematicae

Let C p ( X ) be the space of continuous real-valued functions on X, with the topology of pointwise convergence. We consider the following three properties of a space X: (a) C p ( X ) is Scott-domain representable; (b) C p ( X ) is domain representable; (c) X is discrete. We show that those three properties are mutually equivalent in any normal T₁-space, and that properties (a) and (c) are equivalent in any completely regular pseudo-normal space. For normal spaces, this generalizes the recent result of Tkachuk that C p ( X ) is...

Dugundji extenders and retracts on generalized ordered spaces

Gary Gruenhage, Yasunao Hattori, Haruto Ohta (1998)

Fundamenta Mathematicae

For a subspace A of a space X, a linear extender φ:C(A) → C(X) is called an L c h -extender (resp. L c c h -extender) if φ(f)[X] is included in the convex hull (resp. closed convex hull) of f[A] for each f ∈ C(A). Consider the following conditions (i)-(vii) for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union of A and all clopen convex components of X; (iii) there is a continuous L c h -extender φ:C(A × Y) → C(X × Y), with respect to both the compact-open topology and...

Currently displaying 21 – 31 of 31

Previous Page 2