Extensions of measurable functions
1991 AMS Math. Subj. Class.:Primary 54C10; Secondary 54F65We provide both a spectral and an internal characterizations of arbitrary !-favorable spaces with respect to co-zero sets. As a corollary we establish that any product of compact !-favorable spaces with respect to co-zero sets is also !-favorable with respect to co-zero sets. We also prove that every C* -embedded !-favorable with respect to co-zero sets subspace of an extremally disconnected space is extremally disconnected.
Right factorizations for a class of l.s.cṁappings with separable metrizable range are constructed. Besides in the selection and dimension theories, these l.s.cḟactorizations are also successful in solving the problem of factorizing a class of u.s.cṁappings.
The category Top of topological spaces and continuous maps has the structures of a fibration category and a cofibration category in the sense of Baues, where fibration = Hurewicz fibration, cofibration = the usual cofibration, and weak equivalence = homotopy equivalence. Concentrating on fibrations, we consider the problem: given a full subcategory 𝓒 of Top, is the fibration structure of Top restricted to 𝓒 a fibration category? In this paper we take the special case where 𝓒 is the full subcategory...
We consider two situations which relate properties of filters with properties of the limit operators with respect to these filters. In the first one, we show that the space of sequences having limits with respect to a filter is itself and therefore, by a result of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This answers a question of Dobrowolski and Marciszewski. In the second one, we characterize universally measurable filters which fulfill Fatou’s lemma.