On c-continuous fundamental groups
A scadic space is a Hausdorff continuous image of a product of compact scattered spaces. We complete a theorem begun by G. Chertanov that will establish that for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image of a product of compact ordinal spaces. We introduce an either-or chain condition called Property which we show is satisfied by all ξ-adic spaces. Whereas Property is productive, we show that a weaker (but more natural) Property is not productive. Polyadic...
We show that the Hilbert space is coarsely embeddable into any for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into are equivalent for 1 ≤ p < 2.