Displaying 81 – 100 of 267

Showing per page

Sobre compactificaciones de Wallman-Frink de espacios discretos.

María Emilia Alonso García, José Javier Etayo Gordejuela, José Manuel Gamboa Mutuberria, Jesús María Ruiz Sancho (1980)

Revista Matemática Hispanoamericana

Dado un espacio T3α (X,T), es posible obtener una compactificación T2 del mismo, mediante ultrafiltros asociados a ciertas bases distinguidas de cerrados de (X,T) (Frink [4]). Se plantea así el problema siguiente: ¿Puede obtenerse toda compactificación T2 de (X,T) por este método? Desde el año 1964 en que Frink lo planteó, este interrogante ha tenido respuestas afirmativas parciales. Sin embargo, la solución definitiva es negativa.

Sobre el teorema de inmersión de Mrówka.

Manuel López Pellicer, Enrique Tarazona Ferrandis (1981)

Revista Matemática Hispanoamericana

Certain equivalences of Mrowka's separating condition enable us to characterize when parametric maps are open, closed or quotient.

Some Comments on Q-Irresolute and Quasi-Irresolute Functions

Dontchev, Julian, Ganster, Maximilian (1995)

Serdica Mathematical Journal

The aim of this paper is to continue the study of θ-irresolute and quasi-irresolute functions as well as to give an example of a function which is θ-irresolute but neither quasi-irresolute nor an R-map and thus give an answer to a question posed by Ganster, Noiri and Reilly. We prove that RS-compactness is preserved under open, quasi-irresolute surjections.

Some examples related to colorings

Michael van Hartskamp, Jan van Mill (2000)

Commentationes Mathematicae Universitatis Carolinae

We complement the literature by proving that for a fixed-point free map f : X X the statements (1) f admits a finite functionally closed cover 𝒜 with f [ A ] A = for all A 𝒜 (i.e., a coloring) and (2) β f is fixed-point free are equivalent. When functionally closed is weakened to closed, we show that normality is sufficient to prove equivalence, and give an example to show it cannot be omitted. We also show that a theorem due to van Mill is sharp: for every n 2 we construct a strongly zero-dimensional Tychonov space...

Currently displaying 81 – 100 of 267