Displaying 161 – 180 of 476

Showing per page

On generalized homogeneity of locally connected plane continua

Janusz Jerzy Charatonik (1991)

Commentationes Mathematicae Universitatis Carolinae

The well-known result of S. Mazurkiewicz that the simple closed curve is the only nondegenerate locally connected plane homogeneous continuum is extended to generalized homogeneity with respect to some other classes of mappings. Several open problems in the area are posed.

On H ˇ n -bubbles in n-dimensional compacta

Umed Karimov, Dušan Repovš (1998)

Colloquium Mathematicae

A topological space X is called an H ˇ n -bubble (n is a natural number, H ˇ n is Čech cohomology with integer coefficients) if its n-dimensional cohomology H ˇ n ( X ) is nontrivial and the n-dimensional cohomology of every proper subspace is trivial. The main results of our paper are: (1) Any compact metrizable H ˇ n -bubble is locally connected; (2) There exists a 2-dimensional 2-acyclic compact metrizable ANR which does not contain any H ˇ 2 -bubbles; and (3) Every n-acyclic finite-dimensional L H ˇ n -trivial metrizable compactum...

On Hamel bases in Banach spaces

Juan Carlos Ferrando (2014)

Studia Mathematica

It is shown that no infinite-dimensional Banach space can have a weakly K-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic separable Banach space E has a Hamel basis C-embedded in E(weak), and (ii) no infinite-dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results, it is also shown that there exist noncomplete normed barrelled spaces with closed discrete Hamel bases of arbitrarily large cardinality.

On Hattori spaces

A. Bouziad, E. Sukhacheva (2017)

Commentationes Mathematicae Universitatis Carolinae

For a subset A of the real line , Hattori space H ( A ) is a topological space whose underlying point set is the reals and whose topology is defined as follows: points from A are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on A which are sufficient and necessary for H ( A ) to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated (in...

On hereditary and product-stable quotient maps

Friedhelm Schwarz, Sibylle Weck-Schwarz (1992)

Commentationes Mathematicae Universitatis Carolinae

It is shown that the quotient maps of a monotopological construct A which are preserved by pullbacks along embeddings, projections, or arbitrary morphisms, can be characterized by being quotient maps in appropriate extensions of A.

Currently displaying 161 – 180 of 476