-directed inverse systems of continuous images of arcs.
For every topological property , we define the class of -approximable spaces which consists of spaces X having a countable closed cover such that the “section” has the property for each . It is shown that every -approximable compact space has , if is one of the following properties: countable tightness, -scatteredness with respect to character, -closedness, sequentiality (the last holds under MA or ). Metrizable-approximable spaces are studied: every compact space in this class has...
We characterize Corson-compact spaces by means of countable elementary substructures.
We answer a question of I. Juhasz by showing that MA CH does not imply that every compact ccc space of countable -character is separable. The space constructed has the additional property that it does not map continuously onto .
Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces and are called T₁-complementary provided that there exists a bijection f: X → Y such that and are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact Hausdorff...
In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for -valued maps (the magnetization) of two variables : . We are interested in the behavior of minimizers as . They are expected to be -valued maps of vanishing distributional divergence , so that appropriate boundary conditions enforce line discontinuities. For finite , these line discontinuities are approximated by smooth transition layers, the so-called Néel walls. Néel...
The completion of a Suslin tree is shown to be a consistent example of a Corson compact L-space when endowed with the coarse wedge topology. The example has the further properties of being zero-dimensional and monotonically normal.
We construct a Hausdorff topological group such that is a precalibre of (hence, has countable cellularity), all countable subsets of are closed and -embedded in , but is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.
We show that every compact connected group is the limit of a continuous inverse sequence, in the category of compact groups, where each successor bonding map is either an epimorphism with finite kernel or the projection from a product by a simple compact Lie group. As an application, we present a proof of an unpublished result of Charles Mills from 1978: every compact group is supercompact.