On pseudocompact, countably compact, locally bicompact mappings, and -mappings.
We study in ZF and in the class of spaces the web of implications/ non-implications between the notions of pseudocompactness, light compactness, countable compactness and some of their ZFC equivalents.
In this paper we introduce the notion of the structure space of -semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.
The structure of sub-, pseudo- and quasimaximal spaces is investigated. A method of constructing non-trivial quasimaximal spaces is presented.
We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space is countably compact if and only if it is countably subcompact relative to . (iii) For every metrizable space , the following are equivalent: (a) is compact; (b) for every open filter of , ; (c) is subcompact relative to . We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable...
Let B(κ,λ) be the subalgebra of P(κ) generated by . It is shown that if B is any homomorphic image of B(κ,λ) then either or ; moreover, if X is the Stone space of B then either or . This implies the existence of 0-dimensional compact spaces whose cardinality and weight spectra omit lots of singular cardinals of “small” cofinality.
In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " is countably compact" and " is compact"
An infinite set A in a space X converges to a point p (denoted by A → p) if for every neighbourhood U of p we have |A∖U| < |A|. We call cS(p,X) = |A|: A ⊂ X and A → p the convergence spectrum of p in X and cS(X) = ⋃cS(x,X): x ∈ X the convergence spectrum of X. The character spectrum of a point p ∈ X is χS(p,X) = χ(p,Y): p is non-isolated in Y ⊂ X, and χS(X) = ⋃χS(x,X): x ∈ X is the character spectrum of X. If κ ∈ χS(p,X) for a compactum X then κ,cf(κ) ⊂ cS(p,X). A selection of our results (X...