On some modifications of fuzzy topology
In this paper we introduce the notion of the structure space of -semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.
The structure of sub-, pseudo- and quasimaximal spaces is investigated. A method of constructing non-trivial quasimaximal spaces is presented.
We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space is countably compact if and only if it is countably subcompact relative to . (iii) For every metrizable space , the following are equivalent: (a) is compact; (b) for every open filter of , ; (c) is subcompact relative to . We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable...
Let B(κ,λ) be the subalgebra of P(κ) generated by . It is shown that if B is any homomorphic image of B(κ,λ) then either or ; moreover, if X is the Stone space of B then either or . This implies the existence of 0-dimensional compact spaces whose cardinality and weight spectra omit lots of singular cardinals of “small” cofinality.
In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " is countably compact" and " is compact"
An infinite set A in a space X converges to a point p (denoted by A → p) if for every neighbourhood U of p we have |A∖U| < |A|. We call cS(p,X) = |A|: A ⊂ X and A → p the convergence spectrum of p in X and cS(X) = ⋃cS(x,X): x ∈ X the convergence spectrum of X. The character spectrum of a point p ∈ X is χS(p,X) = χ(p,Y): p is non-isolated in Y ⊂ X, and χS(X) = ⋃χS(x,X): x ∈ X is the character spectrum of X. If κ ∈ χS(p,X) for a compactum X then κ,cf(κ) ⊂ cS(p,X). A selection of our results (X...
The Noetherian type of topological spaces is introduced. Connections between the Noetherian type and other cardinal functions of topological spaces are obtained.
We show that the product of a compact, sequential space with an hereditarily absolutely countably compact space is hereditarily absolutely countably compact, and further that the product of a compact space of countable tightness with an hereditarily absolutely countably compact -bounded space is hereditarily absolutely countably compact.
We investigate, in set theory without the Axiom of Choice , the set-theoretic strength of the statement Q(n): For every infinite set X, the Tychonoff product , where 2 = 0,1 has the discrete topology, is n-compact, where n = 2,3,4,5 (definitions are given in Section 1). We establish the following results: (1) For n = 3,4,5, Q(n) is, in (Zermelo-Fraenkel set theory minus ), equivalent to the Boolean Prime Ideal Theorem , whereas (2) Q(2) is strictly weaker than in set theory (Zermelo-Fraenkel set...