Displaying 21 – 40 of 42

Showing per page

On k -spaces and k R -spaces

Jinjin Li (2005)

Czechoslovak Mathematical Journal

In this note we study the relation between k R -spaces and k -spaces and prove that a k R -space with a σ -hereditarily closure-preserving k -network consisting of compact subsets is a k -space, and that a k R -space with a point-countable k -network consisting of compact subsets need not be a k -space.

Products of k -spaces, and questions

Yoshio Tanaka (2003)

Commentationes Mathematicae Universitatis Carolinae

As is well-known, every product of a locally compact space with a k -space is a k -space. But, the product of a separable metric space with a k -space need not be a k -space. In this paper, we consider conditions for products to be k -spaces, and pose some related questions.

Sur les ouverts des CW-complexes et les fibrés de Serre

Robert Cauty (1992)

Colloquium Mathematicae

M. Steinberger et J. West ont prouvé dans [7] qu’un fibré de Serre p:E → B entre CW-complexes a la propriété de relèvement des homotopies par rapport aux k-espaces. Malheureusement, leur démonstration contient une légère erreur. Ils affirment que certains ensembles (notés U et p - 1 U × U ) sont des CW-complexes car ce sont des ouverts de CW-complexes. Ceci est généralement faux, et notre premier objectif dans cette note est de donner des exemples d’ouverts de CW-complexes n’admettant aucune décomposition...

Tanaka spaces and products of sequential spaces

Yoshio Tanaka (2007)

Commentationes Mathematicae Universitatis Carolinae

We consider properties of Tanaka spaces (introduced in Mynard F., More on strongly sequential spaces, Comment. Math. Univ. Carolin. 43 (2002), 525–530), strongly sequential spaces, and weakly sequential spaces. Applications include product theorems for these types of spaces.

Topologically maximal convergences, accessibility, and covering maps

Szymon Dolecki, Michel Pillot (1998)

Mathematica Bohemica

Topologically maximal pretopologies, paratopologies and pseudotopologies are characterized in terms of various accessibility properties. Thanks to recent convergence-theoretic descriptions of miscellaneous quotient maps (in terms of topological, pretopological, paratopological and pseudotopological projections), the quotient characterizations of accessibility (in particular, those of G. T. Whyburn and F. Siwiec) are shown to be instances of a single general theorem. Convergence-theoretic characterizations...

Two-fold theorem on Fréchetness of products

Szymon Dolecki, Tsugunori Nogura (1999)

Czechoslovak Mathematical Journal

A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.

Currently displaying 21 – 40 of 42