On Measures Integrating All Functions of a Given Vector Lattice.
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have...
We give a construction of Wallman-type realcompactifications of a frame by considering regular sub -frames the join of which generates . In particular, we show that the largest such regular sub -frame gives rise to the universal realcompactification of .
It is shown that the existence of a biseparating map between a large class of spaces of vector-valued continuous functions A(X,E) and A(Y,F) implies that some compactifications of X and Y are homeomorphic. In some cases, conditions are given to warrant the existence of a homeomorphism between the realcompactifications of X and Y; in particular we find remarkable differences with respect to the scalar context: namely, if E and F are infinite-dimensional and T: C*(X,E) → C*(Y,F) is a biseparating...
A space is said to be nearly pseudocompact iff is dense in . In this paper relatively realcompact sets are defined, and it is shown that a space is nearly pseudocompact iff every relatively realcompact open set is relatively compact. Other equivalences of nearly pseudocompactness are obtained and compared to some results of Blair and van Douwen.
A new generalization of realcompactness based on ultrafilters of regular -subsets is introduced. Its relationship with realcompactness, almost realcompactness, almost* realcompactness, c-realcompactness is examined. Some of the properties of the newly introduced space is studied as well.