On complexity of metric spaces
Some aspects of extended frames are studied, namely, the behaviour of ideals, covers, admissible systems of covers and uniformities.
We prove that the Wyler completion of the unitary Cauchy space on a given Hausdorff topological 5 monoid consisting of the underlying set of this monoid and of the family of unitary Cauchy filters on it, is a T2-topological space and, in the commutative case, an abstract monoid containing the initial one.
We characterize the quasi-metric spaces which have a quasi-metric half-completion and deduce that each paracompact co-stable quasi-metric space having a quasi-metric half-completion is metrizable. We also characterize the quasi-metric spaces whose bicompletion is quasi-metric and it is shown that the bicompletion of each quasi-metric compatible with a quasi-metrizable space is quasi-metric if and only if is finite.