Sequential characterizations of metrizability
We give characterizations of certain properties of continuous linear maps between Fréchet spaces, as well as topological properties on Fréchet spaces, in terms of generalizations of Behrends and Kadets small ball property.
En este trabajo se estudia el problema de la representación de un conjunto mediante árboles aditivos, en el sentido de hallar una formalización que permita abordar el mismo desde la perspectiva general de los métodos geométricos de representación del análisis multivariante.
In questa Nota, dati uno spazio metrico perfetto ed un suo sottoinsieme chiuso e raro, si dimostra l'esistenza di una funzione continua tale che per ogni , per ogni e per qualche . In particolare, ciò permette di dare risposta simultaneamente a due questioni poste in [2]. Si mettono in evidenza, poi, ulteriori conseguenze di tale risultato.
If p ∈ Rn, then we have the radial projection map from Rn {p} onto a sphere. Sometimes one can construct similar mappings on metric spaces even when the space is nontrivially different from Euclidean space, so that the existence of such a mapping becomes a sign of approximately Euclidean geometry. The existence of such spherical mappings can be used to derive estimates for the values of a function in terms of its gradient, which can then be used to derive Sobolev inequalities, etc. In this paper...