The decomposition of functions of bounded ϰ-variation into differences of ϰ-decreasing functions
In this paper we define a space σ(X) for approximate systems of compact spaces. The construction is due to H. Freudenthal for usual inverse sequences [4, p. 153–156]. We establish the following properties of this space: (1) The space σ(X) is a paracompact space, (2) Moreover, if X is an approximate sequence of compact (metric) spaces, then σ(X) is a compact (metric) space (Lemma 2.4). We give the following applications of the space σ(X): (3) If X is an approximate system of continua, then X = limX...
We introduce two new classes of compacta, called trees of manifolds with boundary and boundary trees of manifolds with boundary. We establish their basic properties.
The probability measure functor P carries open continuous mappings of compact metric spaces into Q-bundles provided Y is countable-dimensional and all fibers are infinite. This answers a question raised by V. Fedorchuk.
We discuss various results on the existence of ‘true’ preimages under continuous open maps between -spaces, -lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.
Doubling measures appear in relation to quasiconformal mappings of the unit disk of the complex plane onto itself. Each such map determines a homeomorphism of the unit circle on itself, and the problem arises, which mappings f can occur as boundary mappings?