Sur le prolongement des fonctions continues dans les complexes simpliciaux infinis
Topological spaces with generalized symmetries are defined and extensions of the Conley index of a compact isolated invariant set of the flow preserving the structures introduced are proposed. One of the two new indexes is constructed with no additional assumption on the examined set in terms of symmetry invariance.
The aim of the paper is to prove that the bounded and unbounded Urysohn universal spaces have unique (up to isometric isomorphism) structures of metric groups of exponent 2. An algebraic-geometric characterization of Boolean Urysohn spaces (i.e. metric groups of exponent 2 which are metrically Urysohn spaces) is given.
The main results of this paper are that (1) a space is -developable if and only if it is a weak-open image of a metric space, one consequence of the result being the correction of an error in the paper of Z. Li and S. Lin; (2) characterizations of weak-open compact images of metric spaces, which is another answer to a question in in the paper of Y. Ikeda, C. liu and Y. Tanaka.
We use the -Ponomarev-system , where is a locally separable metric space, to give a consistent method to construct a -mapping (compact mapping) with covering-properties from a locally separable metric space onto a space . As applications of these results, we systematically get characterizations of certain -images (compact images) of locally separable metric spaces.