-Ponomarev’s System and Images of Locally Separable Metric Spaces
On conjecture que certains espaces localement étoilés admettent toujours une jolie stratification naturelle, et deviennent ainsi ce qu’on appelle des ensembles. On cite quelques propriétés agréables des ensembles, et quelques exemples exotiques qui distinguent les ensembles, les espaces triangulables, et les espaces localement triangulables.
We give an example of a uniform quotient map from R2 to R which has non-locally connected level sets.
We consider the problem of isometric embedding of metric spaces into Banach spaces, and introduce and study the remarkable class of so-called linearly rigid metric spaces: these are the spaces that admit a unique, up to isometry, linearly dense isometric embedding into a Banach space. The first nontrivial example of such a space was given by R. Holmes; he proved that the universal Urysohn space has this property. We give a criterion of linear rigidity of a metric space, which allows us to give a...