Quantifying completion.
Page 1
Lowen, Robert, Windels, Bart (2000)
International Journal of Mathematics and Mathematical Sciences
José M. Rodríguez Sanjurjo (1980)
Collectanea Mathematica
Let X, Y be two compacta with Sh(X) = Sh (Y). Then, the spaces of components of X, Y are homeomorphic. This does not happen, in general, when X, Y are quasi-equivalent. In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components of two quasi-equivalent compacta X, Y which maps each component in a quasi-equivalent component.
Ebanks, Bruce R. (1998)
International Journal of Mathematics and Mathematical Sciences
Salvador Romaguera, Sergio Salbany (1992)
Extracta Mathematicae
V. Gregori, J. Ferrer (1982)
Stochastica
R. Stoltenberg characterized in [2] those quasi-uniformities which are quasi-pseudometrizable, as well as those quasi-metric spaces which have a quasi-metric completion. In this paper we follow Stoltenberg's work by giving characterizations for quasi-metrizability and quasi-metric completion for a particular type of quasi-uniform spaces, the Pervin's quasi-uniform space.
Salvador Romaguera, Sergio Salbany (1990)
Commentationes Mathematicae Universitatis Carolinae
Lane, E.P. (1969)
Portugaliae mathematica
W.J. PERVIN (1963)
Mathematische Annalen
Nailana, Koena Rufus (2001)
International Journal of Mathematics and Mathematical Sciences
David Buhagiar, Tanja Telenta (2007)
Mathematica Slovaca
Roland Coghetto (2016)
Formalized Mathematics
In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space. We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.
Jiří Svoboda (1988)
Archivum Mathematicum
W.J. PERVIN (1962)
Mathematische Annalen
G. Bourdaud (1981)
Diagrammes
Gabriel Debs (1980)
Annales de l'institut Fourier
Soit un espace topologique régulier et fortement -favorable : si est image continue d’un espace métrisable séparable alors est lusinien; ceci répond à une question de R. Haydon. Si est seulement de Lindelöf et à diagonale alors l’espace mesurable est standard; on en déduit que si l’ensemble des points extrêmaux d’un convexe compact est de Lindelöf et à diagonale , alors est métrisable.
Alexey Ostrovsky (2005)
Acta Universitatis Carolinae. Mathematica et Physica
John W. Carlson (1976)
Colloquium Mathematicae
Donald Marxen (1975)
Semigroup forum
Page 1