The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 18 of 18

Showing per page

Quasi-equivalence of compacta and spaces of components.

José M. Rodríguez Sanjurjo (1980)

Collectanea Mathematica

Let X, Y be two compacta with Sh(X) = Sh (Y). Then, the spaces of components of X, Y are homeomorphic. This does not happen, in general, when X, Y are quasi-equivalent. In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components of two quasi-equivalent compacta X, Y which maps each component in a quasi-equivalent component.

Quasi-metrization and completion for Pervin's quasi-uniformity.

V. Gregori, J. Ferrer (1982)

Stochastica

R. Stoltenberg characterized in [2] those quasi-uniformities which are quasi-pseudometrizable, as well as those quasi-metric spaces which have a quasi-metric completion. In this paper we follow Stoltenberg's work by giving characterizations for quasi-metrizability and quasi-metric completion for a particular type of quasi-uniform spaces, the Pervin's quasi-uniform space.

Quasi-uniform Space

Roland Coghetto (2016)

Formalized Mathematics

In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space. We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.

Quelques propriétés des espaces α -favorables et applications aux convexes compacts

Gabriel Debs (1980)

Annales de l'institut Fourier

Soit X un espace topologique régulier et fortement α -favorable : si X est image continue d’un espace métrisable séparable alors X est lusinien; ceci répond à une question de R. Haydon. Si X est seulement de Lindelöf et à diagonale G δ alors l’espace mesurable ( X , B a ( X ) ) ) est standard; on en déduit que si l’ensemble des points extrêmaux d’un convexe compact K est de Lindelöf et à diagonale G δ , alors K est métrisable.

Questions

Alexey Ostrovsky (2005)

Acta Universitatis Carolinae. Mathematica et Physica

Currently displaying 1 – 18 of 18

Page 1