Countably compact spaces all countable subsets of which are scattered
Let be a Hausdorff space and let be one of the hyperspaces , , or ( a positive integer) with the Vietoris topology. We study the following disconnectedness properties for : extremal disconnectedness, being a -space, -space or weak -space and hereditary disconnectedness. Our main result states: if is Hausdorff and is a closed subset such that (a) both and are totally disconnected, (b) the quotient is hereditarily disconnected, then is hereditarily disconnected. We also...
An archimedean vector lattice A might have the following properties: (1) the sigma property (σ): For each there are and a ∈ A with λₙaₙ ≤ a for each n; (2) order convergence and relative uniform convergence are equivalent, denoted (OC ⇒ RUC): if aₙ ↓ 0 then aₙ → 0 r.u. The conjunction of these two is called strongly Egoroff. We consider vector lattices of the form D(X) (all extended real continuous functions on the compact space X) showing that (σ) and (OC ⇒ RUC) are equivalent, and equivalent...
An Open Coloring Axiom type principle is formulated for uncountable cardinals and is shown to be a consequence of the Proper Forcing Axiom. Several applications are found. We also study dense C*-embedded subspaces of ω*, showing that there can be such sets of cardinality and that it is consistent that ω*{pis C*-embedded for some but not all p ∈ ω*.
Let be a zero-dimensional space and be the set of all continuous real valued functions on with countable image. In this article we denote by (resp., the set of all functions in with compact (resp., pseudocompact) support. First, we observe that (resp., ), where is the Banaschewski compactification of and is the -compactification of . This implies that for an -compact space , the intersection of all free maximal ideals in is equal to , i.e., . By applying methods of functionally...
A function mapping the topological space to the space is called a z-open function if for every cozeroset neighborhood of a zeroset in , the image is a neighborhood of in . We say has the z-separation property if whenever , are cozerosets and is a zeroset of such that , there is a zeroset of such that . A surjective function is z-open if and only if it maps cozerosets to cozerosets and has the z-separation property. We investigate z-open functions and other functions...
In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748] to construct lonely points in . This answers the question of P. Simon...
In [5] the following question was put: are there any maximal n.d. sets in ? Already in [9] the negative answer (under MA) to this question was obtained. Moreover, in [9] it was shown that no -set can be maximal n.d. In the present paper the notion of a maximal n.d. -set is introduced and it is proved that under CH there is no such a set in . The main results are Theorem 1.10 and especially Theorem 2.7(ii) (with Example in Section 3) in which the problem of the existence of maximal n.d. -sets...