Displaying 61 – 80 of 223

Showing per page

Fragmentable mappings and CHART groups

Warren B. Moors (2016)

Fundamenta Mathematicae

The purpose of this note is two-fold: firstly, to give a new and interesting result concerning separate and joint continuity, and secondly, to give a stream-lined (and self-contained) proof of the fact that "tame" CHART groups are topological groups.

Groups associated with minimal flows

J. D. Lawson, Amha T. Lisan (2005)

Czechoslovak Mathematical Journal

Let S be topological semigroup, we consider an appropriate semigroup compactification S ^ of S . In this paper we study the connection between subgroups of a maximal group in a minimal left ideal of S ^ , which arise as equivalence classes of some closed left congruence, and the minimal flow characterized by the left congruence. A particular topology is defined on a maximal group and it is shown that a closed subgroup under this topology is precisely the intersection of an equivalence class with the maximal...

Hereditarily non-sensitive dynamical systems and linear representations

E. Glasner, M. Megrelishvili (2006)

Colloquium Mathematicae

For an arbitrary topological group G any compact G-dynamical system (G,X) can be linearly G-represented as a weak*-compact subset of a dual Banach space V*. As was shown in [45] the Banach space V can be chosen to be reflexive iff the metric system (G,X) is weakly almost periodic (WAP). In the present paper we study the wider class of compact G-systems which can be linearly represented as a weak*-compact subset of a dual Banach space with the Radon-Nikodým property. We call such a system a Radon-Nikodým...

Currently displaying 61 – 80 of 223