Displaying 161 – 180 of 223

Showing per page

Separation properties for self-conformal sets

Yuan-Ling Ye (2002)

Studia Mathematica

For a one-to-one self-conformal contractive system w j j = 1 m on d with attractor K and conformality dimension α, Peres et al. showed that the open set condition and strong open set condition are both equivalent to 0 < α ( K ) < . We give a simple proof of this result as well as discuss some further properties related to the separation condition.

Simplicity of Neretin's group of spheromorphisms

Christophe Kapoudjian (1999)

Annales de l'institut Fourier

Denote by 𝒯 n , n 2 , the regular tree whose vertices have valence n + 1 , 𝒯 n its boundary. Yu. A. Neretin has proposed a group N n of transformations of 𝒯 n , thought of as a combinatorial analogue of the diffeomorphism group of the circle. We show that N n is generated by two groups: the group Aut ( 𝒯 n ) of tree automorphisms, and a Higman-Thompson group G n . We prove the simplicity of N n and of a family of its subgroups.

Spectra of elements in the group ring of SU(2)

Alex Gamburd, Dmitry Jakobson, Peter Sarnak (1999)

Journal of the European Mathematical Society

We present a new method for establishing the ‘‘gap” property for finitely generated subgroups of SU ( 2 ) , providing an elementary solution of Ruziewicz problem on S 2 as well as giving many new examples of finitely generated subgroups of SU ( 2 ) with an explicit gap. The distribution of the eigenvalues of the elements of the group ring 𝐑 [ SU ( 2 ) ] in the N -th irreducible representation of SU ( 2 ) is also studied. Numerical experiments indicate that for a generic (in measure) element of 𝐑 [ SU ( 2 ) ] , the “unfolded” consecutive spacings...

Stable rank and real rank of compact transformation group C*-algebras

Robert J. Archbold, Eberhard Kaniuth (2006)

Studia Mathematica

Let (G,X) be a transformation group, where X is a locally compact Hausdorff space and G is a compact group. We investigate the stable rank and the real rank of the transformation group C*-algebra C₀(X)⋊ G. Explicit formulae are given in the case where X and G are second countable and X is locally of finite G-orbit type. As a consequence, we calculate the ranks of the group C*-algebra C*(ℝⁿ ⋊ G), where G is a connected closed subgroup of SO(n) acting on ℝⁿ by rotation.

Currently displaying 161 – 180 of 223