Page 1 Next

Displaying 1 – 20 of 59

Showing per page

⊗-product of Markov matrices.

J. P. Lampreia, A. Rica da Silva, J. Sousa Ramos (1988)

Stochastica

In this paper we introduce a ⊗-operation over Markov transition matrices, in the context of subshift of finite type, reproducing symbolic properties of the iterates of the critical point on a one-parameter family of unimodal maps. To the *-product between kneading sequences we associate a ⊗-product between the corresponding Markov matrices.

ω-Limit sets for triangular mappings

Victor Jiménez López, Jaroslav Smítal (2001)

Fundamenta Mathematicae

In 1992 Agronsky and Ceder proved that any finite collection of non-degenerate Peano continua in the unit square is an ω-limit set for a continuous map. We improve this result by showing that it is valid, with natural restrictions, for the triangular maps (x,y) ↦ (f(x),g(x,y)) of the square. For example, we show that a non-trivial Peano continuum C ⊂ I² is an orbit-enclosing ω-limit set of a triangular map if and only if it has a projection property. If C is a finite union of Peano continua then,...

Currently displaying 1 – 20 of 59

Page 1 Next