Page 1

Displaying 1 – 12 of 12

Showing per page

Defining complete and observable chaos

Víctor Jiménez López (1996)

Annales Polonici Mathematici

For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which l i m i n f n | f n ( x ) - f n ( y ) | = 0 and l i m s u p n | f n ( x ) - f n ( y ) | > 0 . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...

Dense chaos

Ľubomír Snoha (1992)

Commentationes Mathematicae Universitatis Carolinae

According to A. Lasota, a continuous function f from a real compact interval I into itself is called generically chaotic if the set of all points ( x , y ) , for which lim inf n | f n ( x ) - f n ( y ) | = 0 and lim sup n | f n ( x ) - f n ( y ) | > 0 , is residual in I × I . Being inspired by this definition we say that f is densely chaotic if this set is dense in I × I . A characterization of the generically chaotic functions is known. In the paper the densely chaotic functions are characterized and it is proved that in the class of piecewise monotone maps with finite number of pieces the...

Devil's staircase route to chaos in a forced relaxation oscillator

Lluis Alsedà, Antonio Falcó (1994)

Annales de l'institut Fourier

We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameter values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by Kennedy, Krieg and Chua (in [10]) related with the appearance of...

Diagonal points having dense orbit

T. K. Subrahmonian Moothathu (2010)

Colloquium Mathematicae

Let f: X→ X be a topologically transitive continuous map of a compact metric space X. We investigate whether f can have the following stronger properties: (i) for each m ∈ ℕ, f × f ² × × f m : X m X m is transitive, (ii) for each m ∈ ℕ, there exists x ∈ X such that the diagonal m-tuple (x,x,...,x) has a dense orbit in X m under the action of f × f ² × × f m . We show that (i), (ii) and weak mixing are equivalent for minimal homeomorphisms, that all mixing interval maps satisfy (ii), and that there are mixing subshifts not satisfying (ii)....

Distributional chaos of time-varying discrete dynamical systems

Lidong Wang, Yingnan Li, Yuelin Gao, Heng Liu (2013)

Annales Polonici Mathematici

This paper is concerned with distributional chaos of time-varying discrete systems in metric spaces. Some basic concepts are introduced for general time-varying systems, including sequentially distributive chaos, weak mixing, and mixing. We give an example of sequentially distributive chaos of finite-dimensional linear time-varying dynamical systems, which is not distributively chaotic of type i (DCi for short, i = 1, 2). We also prove that two uniformly topological equiconjugate time-varying systems...

Dynamics of commuting homeomorphisms of chainable continua

Christopher Mouron (2010)

Colloquium Mathematicae

A chainable continuum, X, and homeomorphisms, p,q: X → X, are constructed with the following properties: (1) p ∘ q = q ∘ p, (2) p, q have simple dynamics, (3) p ∘ q is a positively continuum-wise fully expansive homeomorphism that has positive entropy and is chaotic in the sense of Devaney and in the sense of Li and Yorke.

Currently displaying 1 – 12 of 12

Page 1