Page 1

Displaying 1 – 16 of 16

Showing per page

Index filtrations and Morse decompositions for discrete dynamical systems

P. Bartłomiejczyk, Z. Dzedzej (1999)

Annales Polonici Mathematici

On a Morse decomposition of an isolated invariant set of a homeomorphism (discrete dynamical system) there are partial orderings defined by the homeomorphism. These are called admissible orderings of the Morse decomposition. We prove the existence of index filtrations for admissible total orderings of a Morse decomposition and introduce the connection matrix in this case.

Induced subsystems associated to a Cantor minimal system

Heidi Dahl, Mats Molberg (2009)

Colloquium Mathematicae

Let (X,T) be a Cantor minimal system and let (R,) be the associated étale equivalence relation (the orbit equivalence relation). We show that for an arbitrary Cantor minimal system (Y,S) there exists a closed subset Z of X such that (Y,S) is conjugate to the subsystem (Z,T̃), where T̃ is the induced map on Z from T. We explore when we may choose Z to be a T-regular and/or a T-thin set, and we relate T-regularity of a set to R-étaleness. The latter concept plays an important role in the study of...

Inhomogeneities in non-hyperbolic one-dimensional invariant sets

Brian E. Raines (2004)

Fundamenta Mathematicae

The topology of one-dimensional invariant sets (attractors) is of great interest. R. F. Williams [20] demonstrated that hyperbolic one-dimensional non-wandering sets can be represented as inverse limits of graphs with bonding maps that satisfy certain strong dynamical properties. These spaces have "homogeneous neighborhoods" in the sense that small open sets are homeomorphic to the product of a Cantor set and an arc. In this paper we examine inverse limits of graphs with more complicated bonding...

Invariant scrambled sets and maximal distributional chaos

Xinxing Wu, Peiyong Zhu (2013)

Annales Polonici Mathematici

For the full shift (Σ₂,σ) on two symbols, we construct an invariant distributionally ϵ-scrambled set for all 0 < ϵ < diam Σ₂ in which each point is transitive, but not weakly almost periodic.

Invariant sets and Knaster-Tarski principle

Krzysztof Leśniak (2012)

Open Mathematics

Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.

Inverse limit of M -cocycles and applications

Jan Kwiatkowski (1998)

Fundamenta Mathematicae

For any m, 2 ≤ m < ∞, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given r > 1, 0 < b < 1 such that rb > 1 we construct a dynamical system (X, B, μ, T) with simple spectrum such that r(T) = r, F*(T) = b, and C ( T ) / w c l T n : n =

Inverse limit spaces of post-critically finite tent maps

Henk Bruin (2000)

Fundamenta Mathematicae

Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].

Inverse Limits, Economics, and Backward Dynamics.

Judy Kennedy (2008)

RACSAM

We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.

Inverse limits on intervals using unimodal bonding maps having only periodic points whose periods are all the powers of two

W. Ingram, Robert Roe (1999)

Colloquium Mathematicae

We derive several properties of unimodal maps having only periodic points whose period is a power of 2. We then consider inverse limits on intervals using a single strongly unimodal bonding map having periodic points whose only periods are all the powers of 2. One such mapping is the logistic map, f λ ( x ) = 4λx(1-x) on [f(λ),λ], at the Feigenbaum limit, λ ≈ 0.89249. It is known that this map produces an hereditarily decomposable inverse limit with only three topologically different subcontinua. Other...

Currently displaying 1 – 16 of 16

Page 1