The Schauder fixed-point theorem for connectivity maps
In the paper the singular Cauchy-Nicoletti problem for the system ot two ordinary differential equations is considered. New sufficient conditions for solvability of this problem are proved. In the proofs the topological method is applied. Some comparisons with known results are also given in the paper.
A set contained in a topological space has the topological fixed point property if every continuous mapping of the set into itself leaves some point fixed. In 1969, R. H. Bing published his article The Elusive Fixed Point Property, posing twelve intriguing and difficult problems, which exerted a great influence on the study of the fixed point property. We now present a survey article intended for a broad audience that reports on this area of fixed point theory. The exposition is also intended to...
The main purpose of this paper is to introduce the concept of -type fuzzy topological spaces. Further variational principle and Caristi’s fixed point theorem have been extended in the -type fuzzy topological spaces.
The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved....