On the orbits of -closure points of ultimately nonexpansive mappings.
The paper contains a survey of various results concerning the Schauder Fixed Point Theorem for metric spaces both in single-valued and multi-valued cases. A number of open problems is formulated.
In this paper, we establish some stability results for the Jungck–Mann, Jungck–Krasnoselskij and Jungck iteration processes in arbitrary Banach spaces. These results are proved for a pair of nonselfmappings using the Jungck–Mann, Jungck–Krasnoselskij and Jungck iterations. Our results are generalizations and extensions to a multitude of stability results in literature including those of Imoru and Olatinwo [8], Jungck [10], Berinde [1] and many others.
The aim of this paper is to introduce the concept of a new nonlinear multi-valued mapping so called weakly (α, ψ, ξ)-contractive mapping and prove fixed point results for such mappings in metric spaces. Our results unify, generalize and complement various results from the literature. We give some examples which support our main results while previous results in literature are not applicable. Also, we analyze the existence of fixed points for mappings satisfying a general contractive inequality of...
We prove that every 3-generalized metric space is metrizable. We also show that for any ʋ with ʋ ≥ 4, not every ʋ-generalized metric space has a compatible symmetric topology.
We investigate the set of open maps from one Knaster continuum to another. A structure theorem for the semigroup of open induced maps on a Knaster continuum is obtained. Homeomorphisms which are not induced are constructed, and it is shown that the induced open maps are dense in the space of open maps between two Knaster continua. Results about the structure of the semigroup of open maps on a Knaster continuum are obtained and two questions about the structure are posed.