Displaying 261 – 280 of 351

Showing per page

On the difference property of Borel measurable functions

Hiroshi Fujita, Tamás Mátrai (2010)

Fundamenta Mathematicae

If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-α differences.

On the entropy of Darboux functions

Ryszard J. Pawlak (2009)

Colloquium Mathematicae

We prove some results concerning the entropy of Darboux (and almost continuous) functions. We first generalize some theorems valid for continuous functions, and then we study properties which are specific to Darboux functions. Finally, we give theorems on approximating almost continuous functions by functions with infinite entropy.

On the extent of star countable spaces

Ofelia Alas, Lucia Junqueira, Jan Mill, Vladimir Tkachuk, Richard Wilson (2011)

Open Mathematics

For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have...

On the fixed points in an ω -limit set

Jack G. Ceder (1992)

Mathematica Bohemica

Let M and K be closed subsets of [0,1] with K a subset of the limit points of M . Necessary and sufficient conditions are found for the existence of a continuous function f : [ 0 , 1 ] [ 0 , 1 ] such that M is an ω -limit set for f and K is the set of fixed points of f in M .

Currently displaying 261 – 280 of 351