Displaying 21 – 40 of 80

Showing per page

Reflexively representable but not Hilbert representable compact flows and semitopological semigroups

Michael Megrelishvili (2008)

Colloquium Mathematicae

We show that for many natural topological groups G (including the group ℤ of integers) there exist compact metric G-spaces (cascades for G = ℤ) which are reflexively representable but not Hilbert representable. This answers a question of T. Downarowicz. The proof is based on a classical example of W. Rudin and its generalizations. A~crucial step in the proof is our recent result which states that every weakly almost periodic function on a compact G-flow X comes from a G-representation of X on reflexive...

Relational quotients

Miodrag Sokić (2013)

Fundamenta Mathematicae

Let 𝒦 be a class of finite relational structures. We define ℰ𝒦 to be the class of finite relational structures A such that A/E ∈ 𝒦, where E is an equivalence relation defined on the structure A. Adding arbitrary linear orderings to structures from ℰ𝒦, we get the class 𝒪ℰ𝒦. If we add linear orderings to structures from ℰ𝒦 such that each E-equivalence class is an interval then we get the class 𝒞ℰ[𝒦*]. We provide a list of Fraïssé classes among ℰ𝒦, 𝒪ℰ𝒦 and 𝒞ℰ[𝒦*]. In addition, we classify...

Relatively coarse sequential convergence

Roman Frič, Fabio Zanolin (1997)

Czechoslovak Mathematical Journal

We generalize the notion of a coarse sequential convergence compatible with an algebraic structure to a coarse one in a given class of convergences. In particular, we investigate coarseness in the class of all compatible convergences (with unique limits) the restriction of which to a given subset is fixed. We characterize such convergences and study relative coarseness in connection with extensions and completions of groups and rings. E.g., we show that: (i) each relatively coarse dense group precompletion...

Relatively complete ordered fields without integer parts

Mojtaba Moniri, Jafar S. Eivazloo (2003)

Fundamenta Mathematicae

We prove a convenient equivalent criterion for monotone completeness of ordered fields of generalized power series [ [ F G ] ] with exponents in a totally ordered Abelian group G and coefficients in an ordered field F. This enables us to provide examples of such fields (monotone complete or otherwise) with or without integer parts, i.e. discrete subrings approximating each element within 1. We include a new and more straightforward proof that [ [ F G ] ] is always Scott complete. In contrast, the Puiseux series field...

Relatively minimal extensions of topological flows

Mieczysław Mentzen (2000)

Colloquium Mathematicae

The concept of relatively minimal (rel. min.) extensions of topological flows is introduced. Several generalizations of properties of minimal extensions are shown. In particular the following extensions are rel. min.: distal point transitive, inverse limits of rel. min., superpositions of rel. min. Any proximal extension of a flow Y with a dense set of almost periodic (a.p.) points contains a unique subflow which is a relatively minimal extension of Y. All proximal and distal factors of a point...

Currently displaying 21 – 40 of 80