Displaying 41 – 60 of 237

Showing per page

Shadowing and expansivity in subspaces

Andrew D. Barwell, Chris Good, Piotr Oprocha (2012)

Fundamenta Mathematicae

We address various notions of shadowing and expansivity for continuous maps restricted to a proper subset of their domain. We prove new equivalences of shadowing and expansive properties, we demonstrate under what conditions certain expanding maps have shadowing, and generalize some known results in this area. We also investigate the impact of our theory on maps of the interval.

Shadowing and internal chain transitivity

Jonathan Meddaugh, Brian E. Raines (2013)

Fundamenta Mathematicae

The main result of this paper is that a map f: X → X which has shadowing and for which the space of ω-limits sets is closed in the Hausdorff topology has the property that a set A ⊆ X is an ω-limit set if and only if it is closed and internally chain transitive. Moreover, a map which has the property that every closed internally chain transitive set is an ω-limit set must also have the property that the space of ω-limit sets is closed. As consequences of this result, we show that interval maps with...

Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces

Marian Mrozek (1994)

Fundamenta Mathematicae

We present a scheme for constructing various Conley indices for locally defined maps. In particular, we extend the shape index of Robbin and Salamon to the case of a locally defined map in a locally compact Hausdorff space. We compare the shape index with the cohomological Conley index for maps. We also prove the commutativity property of the Conley index, which is analogous to the commutativity property of the fixed point index.

Shape index in metric spaces

Francisco R. Ruiz del Portal, José M. Salazar (2003)

Fundamenta Mathematicae

We extend the shape index, introduced by Robbin and Salamon and Mrozek, to locally defined maps in metric spaces. We show that this index is additive. Thus our construction answers in the affirmative two questions posed by Mrozek in [12]. We also prove that the shape index cannot be arbitrarily complicated: the shapes of q-adic solenoids appear as shape indices in natural modifications of Smale's horseshoes but there is not any compact isolated invariant set for any locally defined map in a locally...

Simplicity of Neretin's group of spheromorphisms

Christophe Kapoudjian (1999)

Annales de l'institut Fourier

Denote by 𝒯 n , n 2 , the regular tree whose vertices have valence n + 1 , 𝒯 n its boundary. Yu. A. Neretin has proposed a group N n of transformations of 𝒯 n , thought of as a combinatorial analogue of the diffeomorphism group of the circle. We show that N n is generated by two groups: the group Aut ( 𝒯 n ) of tree automorphisms, and a Higman-Thompson group G n . We prove the simplicity of N n and of a family of its subgroups.

Size functions

Niel Shell (2004)

Fundamenta Mathematicae

We introduce the notion of a nonarchimedean size function similar to the notion of a size function introduced by Marcos. We describe a class of ring topologies on fields that are complete, neither first countable nor locally bounded, but have topologically nilpotent elements.

Currently displaying 41 – 60 of 237