On a nonlocal metric regularity of nonlinear operators
Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA₀ for some A₀. Let with F₀ = ∗, F₁ = ΣK₁ and Fₘ ≃ G be a cone-decomposition of G of length m and F’₁ = ΣK’₁ ⊂ F₁ with K’₁ ⊂ K₁ which satisfy up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable conditions, which is used to determine cat(SO(10)). A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result could not...
We prove that for any positive integers there exists a real flag manifold with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.
Let M be a closed, connected, orientable 3-manifold. Denote by n(S1 x S2) the connected sum of n copies of S1 x S2. We prove that if the homological category of M is three then for some n ≥ 1, H*(M) is isomorphic (as a ring) to H*(n(S1 x S2)).
For a compact connected semisimple Lie group we shall prove two results (both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the adjoint orbits of , respectively the 1-dimensional relative category of a maximal torus in . The techniques will be classical, but we shall also apply some basic results concerning the so-called -category (cf. [14]).