Displaying 21 – 40 of 71

Showing per page

On Lusternik-Schnirelmann category of SO(10)

Norio Iwase, Toshiyuki Miyauchi (2016)

Fundamenta Mathematicae

Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA₀ for some A₀. Let K i F i - 1 F i | 1 i m with F₀ = ∗, F₁ = ΣK₁ and Fₘ ≃ G be a cone-decomposition of G of length m and F’₁ = ΣK’₁ ⊂ F₁ with K’₁ ⊂ K₁ which satisfy F i F ' F i + 1 up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable conditions, which is used to determine cat(SO(10)). A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result could not...

On metrics of characteristic zero

Władysław Kulpa (2013)

Colloquium Mathematicae

We introduce and study the concept of characteristic for metrics. It turns out that metrizable spaces endowed with an L*-operator which admit a metric of characteristic zero play an important role in the theory of fixed points. We prove the existence of such spaces among infinite-dimensional linear topological spaces.

On Nash theorem

Władysław Kulpa, Andrzej Szymański (2002)

Acta Universitatis Carolinae. Mathematica et Physica

On real flag manifolds with cup-length equal to its dimension

Marko Radovanović (2020)

Czechoslovak Mathematical Journal

We prove that for any positive integers n 1 , n 2 , ... , n k there exists a real flag manifold F ( 1 , ... , 1 , n 1 , n 2 , ... , n k ) with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.

On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem

Peter Wong (1992)

Fundamenta Mathematicae

Let f , g : M 1 M 2 be maps where M 1 and M 2 are connected triangulable oriented n-manifolds so that the set of coincidences C f , g = x M 1 | f ( x ) = g ( x ) is compact in M 1 . We define a Nielsen equivalence relation on C f , g and assign the coincidence index to each Nielsen coincidence class. In this note, we show that, for n ≥ 3, if M 2 = M ˜ 2 / K where M ˜ 2 is a connected simply connected topological group and K is a discrete subgroup then all the Nielsen coincidence classes of f and g have the same coincidence index. In particular, when M 1 and M 2 are compact, f...

On the dimension of the space of ℝ-places of certain rational function fields

Taras Banakh, Yaroslav Kholyavka, Oles Potyatynyk, Michał Machura, Katarzyna Kuhlmann (2014)

Open Mathematics

We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.

On the disjoint (0,N)-cells property for homogeneous ANR's

Paweł Krupski (1993)

Colloquium Mathematicae

A metric space (X,ϱ) satisfies the disjoint (0,n)-cells property provided for each point x ∈ X, any map f of the n-cell B n into X and for each ε > 0 there exist a point y ∈ X and a map g : B n X such that ϱ(x,y) < ε, ϱ ^ ( f , g ) < ε and y g ( B n ) . It is proved that each homogeneous locally compact ANR of dimension >2 has the disjoint (0,2)-cells property. If dimX = n > 0, X has the disjoint (0,n-1)-cells property and X is a locally compact L C n - 1 -space then local homologies satisfy H k ( X , X - x ) = 0 for k < n and Hn(X,X-x) ≠ 0.

Currently displaying 21 – 40 of 71