Previous Page 2

Displaying 21 – 35 of 35

Showing per page

Strong Cohomological Dimension

Jerzy Dydak, Akira Koyama (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We characterize strong cohomological dimension of separable metric spaces in terms of extension of mappings. Using this characterization, we discuss the relation between strong cohomological dimension and (ordinal) cohomological dimension and give examples to clarify their gaps. We also show that I n d G X = d i m G X if X is a separable metric ANR and G is a countable Abelian group. Hence d i m X = d i m X for any separable metric ANR X.

Strong surjectivity of mappings of some 3-complexes into 3-manifolds

Claudemir Aniz (2006)

Fundamenta Mathematicae

Let K be a CW-complex of dimension 3 such that H³(K;ℤ) = 0, and M a closed manifold of dimension 3 with a base point a ∈ M. We study the problem of existence of a map f: K → M which is strongly surjective, i.e. such that MR[f,a] ≠ 0. In particular if M = S¹ × S² we show that there is no f: K → S¹ × S² which is strongly surjective. On the other hand, for M the non-orientable S¹-bundle over S² there exists a complex K and f: K → M such that MR[f,a] ≠ 0.

Strong surjectivity of mappings of some 3-complexes into M Q 8

Claudemir Aniz (2008)

Open Mathematics

Let K be a CW-complex of dimension 3 such that H 3(K;ℤ) = 0 and M Q 8 the orbit space of the 3-sphere 𝕊 3 with respect to the action of the quaternion group Q 8 determined by the inclusion Q 8 ⊆ 𝕊 3 . Given a point a ∈ M Q 8 , we show that there is no map f:K → M Q 8 which is strongly surjective, i.e., such that MR[f,a]=min(g −1(a))|g ∈ [f] ≠ 0.

Strong surjectivity of maps from 2-complexes into the 2-sphere

Marcio Fenille, Oziride Neto (2010)

Open Mathematics

Given a model 2-complex K P of a group presentation P, we associate to it an integer matrix ΔP and we prove that a cellular map f: K P → S 2 is root free (is not strongly surjective) if and only if the diophantine linear system ΔP Y = d e g (f) has an integer solution, here d e g (f)is the so-called vector-degree of f

Suites spectrales de Hochschild-Serre à coefficients dans un espace semi-normé.

Abdesselam Bouarich (2005)

Extracta Mathematicae

In this paper, we prove the existence of the theory of spectral sequences in the category of real semi normed spaces. Using this theory, we associate to any extension of discrete groups the Hochschild-Serre spectral sequence in bounded cohomology with coefficients. In addition, we give the explicit expression of the first and the second term of this spectral sequence without further hypothesis.

Sur la catégorie de Lusternik-Schnirelmann des algèbres de cochaînes

Bitjong Ndombol (1991)

Annales de l'institut Fourier

Nous introduisons une nouvelle définition d’un invariant bi M cat pour une algèbre de cochaînes A connexe et 1-connexe, de type fini sur un corps k de caractéristique quelconque, et nous montrons d’une part, qu’il coïncide avec l’invariant 𝒜 cat introduit par S. Halperin et J.-M. Lemaire et d’autre part, qu’il est invariant par extension de corps et qu’il vérifie la conjecture de Ganéa.

Currently displaying 21 – 35 of 35

Previous Page 2