Displaying 381 – 400 of 560

Showing per page

Partially dissipative periodic processes

Jan Andres, Lech Górniewicz, Marta Lewicka (1996)

Banach Center Publications

Further extension of the Levinson transformation theory is performed for partially dissipative periodic processes via the fixed point index. Thus, for example, the periodic problem for differential inclusions can be treated by means of the multivalued Poincaré translation operator. In a certain case, the well-known Ważewski principle can also be generalized in this way, because no transversality is required on the boundary.

Periodic problems for ODEs via multivalued Poincaré operators

Lech Górniewicz (1998)

Archivum Mathematicum

We shall consider periodic problems for ordinary differential equations of the form x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x ( a ) , where f : [ 0 , a ] × R n R n satisfies suitable assumptions. To study the above problem we shall follow an approach based on the topological degree theory. Roughly speaking, if on some ball of R n , the topological degree of, associated to (), multivalued Poincaré operator P turns out to be different from zero, then problem () has solutions. Next by using the multivalued version of the classical Liapunov-Krasnoselskǐ guiding potential...

Periodic segments and Nielsen numbers

Klaudiusz Wójcik (1999)

Banach Center Publications

We prove that the Poincaré map φ ( 0 , T ) has at least N ( h ˜ , c l ( W 0 W 0 - ) ) fixed points (whose trajectories are contained inside the segment W) where the homeomorphism h ˜ is given by the segment W.

Poincaré duality and commutative differential graded algebras

Pascal Lambrechts, Don Stanley (2008)

Annales scientifiques de l'École Normale Supérieure

We prove that every commutative differential graded algebra whose cohomology is a simply-connected Poincaré duality algebra is quasi-isomorphic to one whose underlying algebra is simply-connected and satisfies Poincaré duality in the same dimension. This has applications in rational homotopy, giving Poincaré duality at the cochain level, which is of interest in particular in the study of configuration spaces and in string topology.

Quelques contre-exemples pour la LS catégorie d'une algèbre de cochaînes

Elhassan Idrissi (1991)

Annales de l'institut Fourier

À toute algèbre de cochaînes A sont associés les invariants numériques suivants : bi M cat ( A ) , r M cat ( A ) et l M cat ( A ) qui approximent, pour tout corps k et lorsque A = C * ( X ; k ) , la catégorie au sens de Lusternik-Schnirelmann de l’espace X . Nous montrons dans cet article que ces trois invariants sont deux à deux distincts.

Realization of fixed point sets of relative maps

Moo Ha Woo, Xuezhi Zhao (2011)

Fundamenta Mathematicae

Given a relative map f: (X,A) → (X,A) on a pair (X,A) of compact polyhedra and a closed subset Y of X, we shall give some criteria for Y to be the fixed point set of some map relatively homotopic to f.

Currently displaying 381 – 400 of 560