-local Johnson-Wilson spectra and their Hopf algebroids.
We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the , where 0 ≤ r ≤ n, with the endomorphism ring of being , where denotes the completion of E(r).
The purpose of this paper is to show how central extensions of (possibly infinite-dimensional) Lie algebras integrate to central extensions of étale Lie 2-groups in the sense of [Get09, Hen08]. In finite dimensions, central extensions of Lie algebras integrate to central extensions of Lie groups, a fact which is due to the vanishing of for each finite-dimensional Lie group. This fact was used by Cartan (in a slightly other guise) to construct the simply connected Lie group associated to each finite-dimensional...